top of page

原著論文 Publications

  1. *Midorikawa M+, *Sakamoto H, *Nakamura Y, Hirose K, Miyata M+. Developmental refinement of the active zone nanotopography and axon wiring at the somatosensory thalamus. Cell Rep. 43: 114770 (2024). doi: 10.1016/j.celrep.2024.114770

  2. *Walter A, Uesaka N, Midorikawa M+. Editorial: Functional and molecular insights of neural circuit adaptation, refinement, and remodeling. Front Cell Neurosci. 17:1213640 (2023). doi: 10.3389/fncel.2023.1213640.

  3. *Midorikawa M+. Developmental and activity-dependent modulation of coupling distance between release site and Ca2+ channel. Front Cell Neurosci. 16:1037721 (2022). doi: 10.3389/fncel.2022.1037721.

  4. *Midorikawa M+. Pathway-specific maturation of presynaptic functions of the somatosensory thalamus. Neurosci Res. 181:1-8 (2022). doi: 10.1016/j.neures.2022.04.008.

  5. *Abdelaal MS, Midorikawa M, Suzuki T, Kobayashi K, Takata N, Miyata M, Mimura M and Tanaka KF+. Dysfunction of parvalbumin-expressing cells in the thalamic reticular nucleus induces cortical spike-and-wave discharges and an unconscious state. Brain Communications, 4(2): fcac010. (2022). doi: 10.1093/braincomms/fcac010.

  6. *Midorikawa M+ and Miyata M+. Distinct functional developments of surviving and eliminated presynaptic terminals. Proceedings of the National Academy of Sciences of the United States of America, 118(11): e2022423118. (2021). doi: 10.1073/pnas.2022423118.

  7. *Miki T+, Midorikawa M and Sakaba T+. Direct imaging of rapid tethering of synaptic vesicles accompanying exocytosis at a fast central synapse. Proceedings of the National Academy of Sciences of the United States of America, 117(25), 14493-502. (2020). doi: 10.1073/pnas.2000265117.

  8. *Midorikawa M+. Real-time imaging of synaptic vesicle exocytosis by total internal reflection fluorescence (TIRF) microscopy. Neurosci Res. 136:1-5. (2018). doi: 10.1016/j.neures.2018.01.008.

  9. *Midorikawa M+ and Sakaba T+. Kinetics of Releasable Synaptic Vesicles and Their Plastic Changes at Hippocampal Mossy Fiber Synapses. Neuron, 96(5), 1033-1040. (2017). doi: 10.1016/j.neuron.2017.10.016.

  10. *Okamoto Y, Lipstein N, Hua Y, Lin KH, Brose N, Sakaba T and Midorikawa M+. Distinct modes of endocytotic presynaptic membrane and protein uptake at the calyx of Held terminal of rats and mice. eLife, 5: e14643. (2016). doi: 10.7554/eLife.14643.

  11. *Midorikawa M+ and Sakaba T+. Imaging Exocytosis of Single Synaptic Vesicles at a Fast CNS Presynaptic Terminal. Neuron, 88(3), 492-8. (2015). doi: 10.1016/j.neuron.2015.09.047.

  12. *Midorikawa M+, Okamoto Y and Sakaba T+. Developmental changes in Ca2+ channel subtypes regulating endocytosis at the calyx of Held. The Journal of Physiology, 592(16), 3495-3510. (2014). doi: 10.1113/jphysiol.2014.273243.

  13. *Knowles MK, Barg S, Wan L, Midorikawa M, Chen X and Almers W+. Single secretory granules of live cells recruit syntaxin-1 and synaptosomal associated protein 25 (SNAP-25) in large copy numbers. Proceedings of the National Academy of Sciences of the United States of America, 107(48), 20810-5. (2010). doi: 10.1073/pnas.1014840107.

  14. *Barg S, Knowles MK, Chen X, Midorikawa M and Almers W+. Syntaxin clusters assemble reversibly at sites of secretory granules in live cells. Proceedings of the National Academy of Sciences of the United States of America, 107(48), 20804-9. (2010). doi: 10.1073/pnas.1014823107.

  15. *Midorikawa M, Tsukamoto Y, Berglund K, Ishii M and Tachibana M+. Different roles of ribbon-associated and ribbon-free active zones in retinal bipolar cells. Nature Neuroscience, 10(10), 1268-76. (2007). . doi: 10.1291/hypres.31.2115.

  16. *Berglund K, Midorikawa M and Tachibana M+. Increase in the pool size of releasable synaptic vesicles by the activation of protein kinase C in goldfish retinal bipolar cells. The Journal of Neuroscience, 22(12), 4776-85. (2002). doi: 10.1523/JNEUROSCI.22-12-04776.2002.

bottom of page